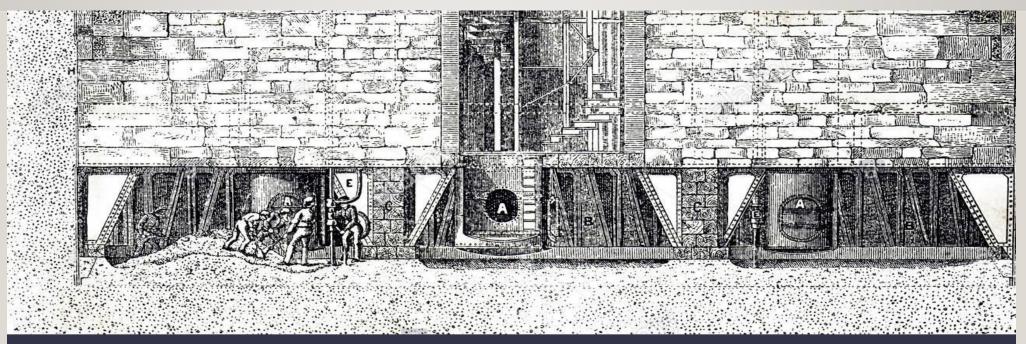
# DECOMPRESSION & BAROTRAUMA

#### Dr. Frans Johannes Cronjé,


MBChB, MSc Aerospace Medicine, PGD(OccMed), Fellow EHM (Duke), BCN

Courtesy of Dr. Rudy Britz

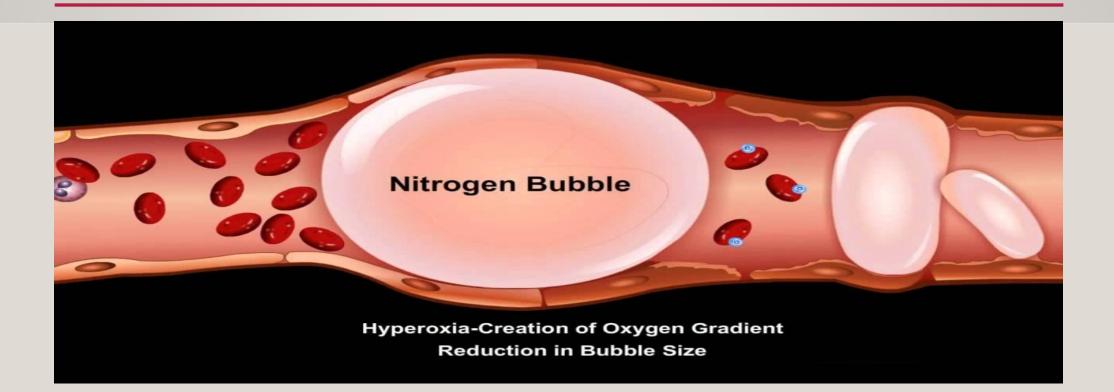
## **DECOMPRESSION DISEASE**

- Also called "bends", dysbarism but first known as Caissons disease in 1850. There is a distinct difference between compressed air and altitude decompression disease.
- I.e. The supersaturation of tissues with nitrogen.
- Normally nitrogen is removed by breathing.
- The partial pressure of the Nitrogen in the body equals that of the partial pressure of the nitrogen in the outside air
- This is about I Liter
- When outside air pressure drops during ascent tissues become supersaturated with nitrogen and we have formation of bubbles.

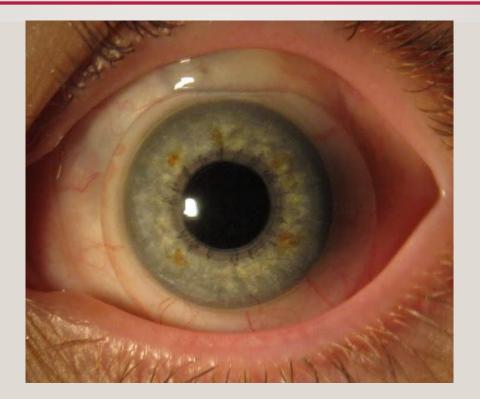
#### CAISSON'S DISEASE



#### a alamy stock photo


MR778K

www.alamy.com


## **BUBBLE FORMATION**

- The driving force for this bubble formation in a fluid is the pressure difference between the partial pressure of the gas dissolved in the fluid and the absolute pressure.
- Bubble formation is greater in different tissues and lipid tissue is the highest.
- Bubbles only form in a fluid when certain suitable nuclei are available e.g. microscopic gases or small particles
- Decompression occurs in exposure to a reduced atmosphere in a decompression chamber or in flight
- Most of us are divers and wary of this disease, but it can happen if exposed to altitude 28000 ft for longer than 2 hours.
- It may occur much lower at 18000ft when exposed to hyperbaric environment such as diving
- 12 Hours between diving and flying

#### **BUBBLE TROUBLE**



#### **BUBBLE FORMATION IN EYE**



# CLINICAL MANIFESTATIONS OF DECOMPRESSION SICKNESS

- Joint and limbs "bends"
- Ill localized and deep seated (may recover or collapse)
- Bubbles may be seen on x ray (usually knee ,shoulder, foot, wrist or hands).
- Skin mottling, rashes and urticaria.
- Respiratory symptoms (chokes)A deep breath gives the" inspiratory snatch" i.e. a painful inspiration and soreness under sternum.Very serious symptoms
- Pulmonary arterioles and capillaries are irritated due to gas bubbles
- Neurological manifestations such as fits paralysis and paresthesia and collapse
- Visual ,blurred vision, scotomata and hemianopia.

# MARBLING



# **INCIDENCE OF DECOMPRESSION**

- <u>General factors</u>
- Altitude 18000 ft is minimum
- Base altitude. No flying after being exposed to 2 atmosphere (34 meters) for at least 12 hours.
- Rate of ascent and exposure time, normally 20 -60 minutes
- Re exposure and exercise
- Hypoxia and low temperatures
- Repeated exposure

#### PERSONAL FACTORS

- Age 17-20 and 27-29 ninefold increase also greater in obese individuals
- Injury
- Infection and post alcohol.
- True individual susceptibility, History of a previous decompression illness increases the risk of follow up incident.
- Myocardial ischemia ,spontaneous pneumothorax, septicemia
- Flight stresses like pressure vertigo, abdominal distension, hypoxia, motion sickness
- Psychological stresses anxiety claustrophobia and hyperventilation.

### **MEDICAL TREATMENT**

- 100% oxygen inhalation.
- If unconscious assist ventilation, assist cardiac function.
- IV Dextran 40% in 30 min.
- Valium 5mg, Aspirin 300mg, 2 tabs, Vitamin C 250mg , 2 tabs, Medrol 16 mg 2 tabs.
- IV Decadron 8mg every 6 hours IV.
- Administer 50 ml of 50% dextrose in first drip.
- Catheterize and check 60ml/hr. monitor Bp and pulse.
- Clexane 40mg every 6 hours.

# MS. PIGGY



# TREATMENT OF DECOMPRESSION DESEASE

- Descend.
- Recompression to ground level
- 100% oxygen
- Treatment of choice is re-compression in oxygen chamber
- Transport (Medivac) at 1000ft if possible, to chamber

#### HYPERBARIC CHAMBER INSIDE



# COMPRESSION THERAPY (HYPERBARIC CHAMBER)

- Compress rapidly to 2.8 atmosphere breathing 100% oxygen if marked improvement continue for 30 - 60 min.
- If not compress to 6 atmospheres.
- A single striking feature of altitude sickness is rapid and complete recovery but remain cautious for osteonecrosis of femur and humerus neck.

# BEST TREATMENT FOR ALTITUDE DECOMPRESSION DISEASE IS BACK ON THE GROUND



#### MONOPLACE CHAMBER



# PREVENTION OF DECOMPRESSION DESEASE.

- Reduce environmental pressure and duration of exposure to low pressure or eliminate nitrogen using 100% oxygen before exposure.
- High risk with military pilots and cabins exposed to more than 22000 ft.
- Pre oxygenation for more than 30 minutes. Will help up to 48000ft for 10 minutes.
- Pre oxygenation for 3 hours will give endurance of 3 hours at 40000ft.

# SLOW DECOMPRESSION AND RAPID DECOMPRESSION.

- Rapid decompression i.e.. The window blows out and cabin pressure is lost. Rapid descent to 10,000ft and overhead oxygen masks become available.
- Slow decompression kills. Compressor leak or some malfunction at example 24000 ft leads to hypoxia and death. Always when doing medivacs use a divers watch.

#### RAPID DECOMPRESSION



#### **DECOMPRESSION IN AIRCRAFT**



#### BAROTRAUMA

- Definition: tissue damage resulting from the expansion and contraction of enclosed gas spaces, it is a direct effect of the gas volume changes causing tissue damage.
- Boyles law: At a given temp the volume of a gas will vary inversely with absolute pressure.
- One liter of gas at 33 feet (10 meters) underwater will be reduced to 0,5 liter (2 ATA)
- One liter of gas at 90 meters will only reduce a further 1/10<sup>th</sup> of a liter.
- Biggest differential is at 10 meters
- Always remember at 18000 ft we have only 50% of our atmospheric pressure and double the volume
- Time of useful consciousness is 30 min

# **BAROTRAUMA OF DESCENT**

- Barotrauma during compression in a chamber or during diving (increased pressures of the surrounding area)
- Pressure imbalance due to the inability to equalize pressure in the bodily cavity as depth increases and gives rise to damage of mucous membranes oedema and hemorrhage.

#### **BAROTRAUMA OF ASCENT**

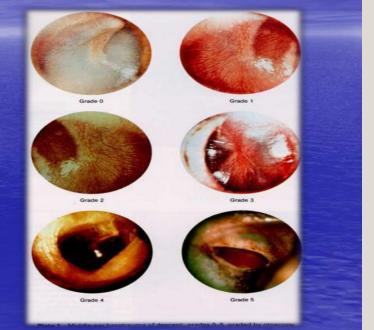
- This is the result of distension of tissues by enclosed expanding gases.
- This occurs when environmental pressures are reduced, i.e., decompression in a chamber and ascent in air or water.
- Most common disorder in flying is the barotrauma of the ear.
- This is divided into external middle and inner ear.

### EXTERNAL EAR BAROTRAUMA

- When external ear is blocked with cerumen, exostosis or tight-fitting ear plugs.
- Contraction of the trapped air leads to congestion and hemorrhage of the tympanic membrane.
- Clinically Valsalva is difficult to perform, and pain may be present
- Treatment: remove hoods, plugs and exostosis
- Vertigo case at Wonderboom Airport was ear squeeze due to headset

# EXOSTOSIS (SURFERS' EAR)




#### BAROTRAUMA OF THE MIDDLE EAR

- The most common disorder in flying and diving is the failure of the middle ear to equalize the pressure difference via the Eustachian tube
- Any condition which tends to block the eustachian tube predisposes to middle ear barotrauma.
- Symptoms are intense pain, feeling of fulness and even alternobaric vertigo.
- The pressure can be relieved by yawning, swallowing, chewing gum or inflating ear cavity with Valsalva maneuver.
- Medication not allowed in flying, but in diving we use Stugeron and valoid.
- The most effective test for Eustachian tube potency is the hypobaric chamber test, ascending to 18000ft

#### MIDDLE EAR BAROTRAUMA

#### Middle Ear Barotrauma

- Various grades of injury of TM
  - 1 Capilary dilation
  - 2 Mucosal edema
  - 3 Hemorrhage into TM
  - 4 Hemorrhage or serrous exudate
  - 5 TM rupture
- Treat conservatively

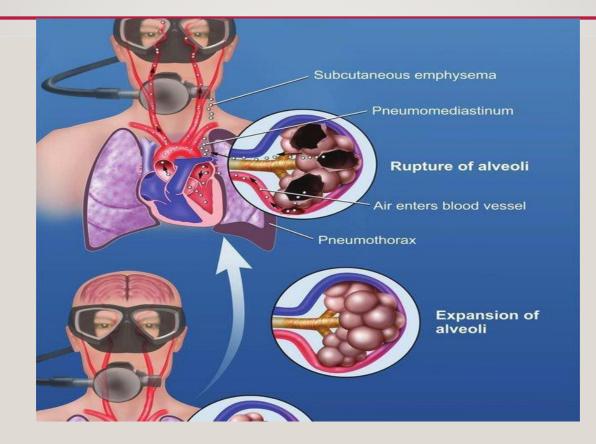


#### **INNER EAR BAROTRAUMA**

- Mechanism: The inward movement of the tympanic membrane because of the pressure gradient pushes the footplate of the stapes inwards, the round window bulges and ruptures.
- Tinnitus ,vertigo, ,ataxia and hearing loss may occur ( either total or 4000-6000Hz).
- Audiometry of up to 8000hz and electronystagmography is needed.
- Medical emergency It must be repaired or loss will be permanent.
- Permanently unfit for diving and fit for flying after recovery (restriction of aerobatic maneuvers)

#### PARANASAL SINUSES

- Symptoms and signs:
- Sensation of tightness and pressure over sinuses.
- Blood and mucous in the nose or pharynx.
- Pain usually over frontal sinus and may be referred to upper teeth.
- Treatment:
- X-ray examination, decongestants double therapy antibiotics and steroids.


### **BAROTRAUMA OF THE LUNGS**

- Predisposing pathology:
- Asthma, cysts, tumors, fibrosis and bullae.
- Symptoms are dyspnea, cough and hemoptysis.
- A diver with a lung volume of 6 liters at 10 meters must exhale 6 liters of gas at during ascent in order to maintain normal 6 liter volume at the surface. This is relative easy to maintain
- However if breath holding takes place the risk increase dramatically
- During rapid decompression in flight, the rate of decompression of the cabin in relation to simultaneous rate of decompression of the lung plays the most important role.

#### PULMONARY BAROTRAUMA

- Pulmonary tissue damage
- Surgical emphysema
- Pneumothorax
- Air embolism
- Clinical signs are:
- Hoarseness, feeling of fullness in the throat, pleuritic pain, dyspnea, dysphagia, syncope and shock
- Always insert chest drain and transport at 1000ft

#### PULMONARY BAROTRAUMA



#### **AIR EMBOLISM**

- Gas passing into pulmonary veins and into systemic circulation causing vascular obstruction and infarction.
- Clinical signs: confusion aphasia, loc, paresis, gas bubbles in retina abnormal ECG and EEG.
- Treatment is urgent: immediate recompression.

# CONDITIONS THAT SHOULD NEVER FLY

- Large unreduced hernias
- Bowel obstruction
- Pneumothorax
- Recent air contrast studies of the brain
- Acute appendicitis, cholecystitis, and diverticulitis.
- Acute peptic ulceration.
- Recent bowl surgery

# FUTURE OF FLYING



#### **THANK YOU**

- Enjoy the world of aviation
- Special thank you to google for pictures and illustrations.