Appendix 2.0 B to SA-CATS 61 Airline Transport Pilot Licence syllabus

REF	1. AVIATION METEOROLOGY	Α	н
1.1	THE ATMOSPHERE	√	✓
	- composition	√	✓
	- structure	√	✓
	- International standard atmosphere (ISA)	√	✓
	- ISA deviation	√	✓
	- Jet standard atmosphere (JSA)	√	n/a
1.2	PRESSURE	√	✓
1.2.1	Atmospheric pressure	√	✓
	- measurement: units in use	√	✓
	- QNH, QFE, QFF and 1013.25 hPa	√	✓
	- mercury barometer	√	✓
	- aneroid barometer	√	✓
	- pressure variation with height and diurnal variation	√	✓
	- isobars	√	✓
1.2.2	Pressure systems	√	✓
	- depressions: thermal, orographic	√	✓
	- troughs and coastal lows	√	✓
	- tropical cyclones	√	✓
	 weather associated with depressions 	√	✓
	- anticyclones	√	✓
	- ridges	√	✓
	- anticyclonic weather	√	✓
	- cols and associated weather	√	✓
1.3	TEMPERATURE	√	✓
	- measurement: units in use, conversion factors	√	√
	- heating of the atmosphere	√	√

REF		Α	Н
	- radiation	√	√
	- conduction	√	✓
	- convection	√	✓
	- advection	√	✓
	 land and sea heating and cooling 	√	√
	- diurnal variation of temperature	√	√
	- lapse rates	√	√
	- inversions	√	✓
1.4	HUMIDITY	√	√
	- evaporation, saturation, condensation, freezing and melting	✓	✓
	- sublimation	√	✓
	- humidity measurement	√	✓
	- wet bulb temperature	√	√
	- dry bulb temperature	√	√
	 absolute humidity 	√	√
	- relative humidity	√	√
	- dew point temperature	√	√
1.5	DENSITY	√	√
1.5.1	The gas laws	√	√
	- Boyle's law	√	√
	- Charles's law	√	√
	- the gas equation (Boyle's and Charles's laws)	√	√
1.5.2	Factors affecting density	√	√
	- temperature	✓	√
	– pressure	√	✓
	- altitude	√	√
	– humidity	√	✓
1.5.3	Density altitude	✓	✓

REF		Α	Н
	- calculating density altitude	√	✓
	- effect of density altitude on aircraft performance	√	√
1.6	ADIABATIC PROCESS, LAPSE RATE AND STABILITY	√	✓
	- dry adiabatic lapse rate (DALR)	√	√
	- saturated adiabatic lapse rate (SALR)	√	√
	- environmental adiabatic lapse rate (ELR)	>	✓
	 absolute stability 	√	✓
	- absolute instability	>	√
	– conditional instability	√	✓
	- neutral stability	>	√
1.7	WIND	>	√
1.7.1	Definitions	>	√
	 veering and backing 	>	√
	- gust, squall, gale, hurricane, gust factor	>	✓
1.7.2	Measurement of wind	>	✓
	- wind vane and anemometer	~	√
1.7.3	Formation of wind	>	√
	- pressure gradient force	√	√
	- geostrophic force	√	√
	- coriolis force	√	√
	geostrophic wind	√	√
	gradient wind	~	✓
	- surface wind	~	√
	 diurnal variations 	√	√
1.7.4	Upper winds	√	n/a
	- thermal wind	√	n/a
	– jet streams	√	n/a
	- clear air turbulence (CAT)	✓	n/a

REF		Α	Н
1.7.5	Local winds	√	√
	- Land and Sea breezes	√	√
	Katabatic and Anabatic winds	√	√
	- the Föhn wind	√	√
	- the Berg wind	√	√
	- Monsoons	√	√
	- Trade winds and the ITCZ	√	√
	General global wind circulation	√	√
1.8	AIR MASSES	√	√
	- classification	√	√
	- modification	√	√
	- air masses affecting South Africa	√	√
1.9	CLOUDS	√	✓
1.9.1	Cloud measurement	√	√
	- cloud amount	√	√
	- methods of measuring cloud base and cloud ceiling	√	✓
1.9.2	Cloud formation	√	√
	- convective	√	√
	- orographic	√	√
	- frontal	√	√
	- convection	√	√
	- convergence	√	>
	- turbulence	√	√
1.9.3	Cloud classification	√	√
1.9.4	Cloud types	√	√
1.10	PRECIPITATION	√	✓
	- Bergeron theory (ice particle theory)	√	√
	- Coalescence theory	√	√

Meteorology

REF		Α	Н
	- intensity	√	√
	- types of precipitation	√	√
1.11	Thunderstorms	√	√
1.11.1	Formation	√	√
	- conditions for the development	√	√
1.11.2	Thunderstorm classification	√	√
	- convective	√	√
	- orographic	√	√
	- advection	√	√
	- convergent	√	√
	- frontal	√	√
	- nocturnal	√	√
1.11.3	Stages of development	√	√
	- growth	√	√
	- mature	√	√
	- dissipating	√	√
	- squall lines	√	√
1.11.4	Hazards	√	√
	- turbulence/windshear	√	√
	- microbursts	√	√
	- hail/icing	√	√
	- lightning	√	√
	- avoidance	√	√
1.12	WINDSHEAR AND TURBULENCE	√	√
	- definition of windshear	√	√
	- low altitude windshear	√	√
	- causes	√	√
	- effects on aircraft in flight	√	√

REF		А	Н
	- methods to counter the effects	√	✓
	- definition of turbulence	√	✓
	- types and causes	✓	✓
	 visual detection of mountain waves 	✓	✓
	- wake turbulence	√	✓
	- cause	√	√
	- influence of speed, mass and wind	√	√
	- avoidance during crossing traffic, take-off and landing	√	√
1.13	ICE ACCRETION	√	√
1.13.1	Airframe icing	√	√
	- conditions for formation	√	√
	- types of icing	√	√
	- clear ice	√	√
	- rime ice	√	√
	- mixed ice	√	√
	- rain ice	√	√
	- hoar frost	√	√
1.13.2	Engine icing	√	√
	Piston engine	√	√
	- impact icing	√	√
	- fuel icing	√	√
	- carburettor icing: cause, recognition, prevention	√	√
	gas turbine engine icing	√	√
1.14	VISIBILITY	√	√
1.14.1	Definitions	√	√
	- types of visibility: mist, fog, haze	√	√
	- visibility and measurement	√	√
	- runway visual range (RVR) and measurement	√	√

REF		Α	Н
1.14.2	Fog	✓	√
	- radiation	√	√
	- advection	√	√
	- frontal	√	√
	- orographic (upslope)	√	√
	- steam	√	√
	- smog	√	√
1.15	FRONTS	√	√
1.15.1	Cold fronts	√	√
	- formation	√	√
	 associated clouds and weather 	√	√
	- flying conditions	√	√
	- changes with the passage of the front	√	√
1.15.2	Warm fronts	√	√
	- formation	√	√
	- associated clouds and weather	✓	√
	- flying conditions	✓	√
	- changes with the passage of the front	√	√
1.15.3	Occlusions	√	√
	- formation	√	√
	- associated clouds and weather	√	√
1.15.4	Stationary fronts	√	√
1.16	CLIMATOLOGY	√	√
1.16.1	General world circulation	√	√
	- climatic zones	√	√
	- ITCZ: weather and seasonal movement	√	√
1.16.2	Local seasonal weather	√	√

Meteorology

REF		Α	Н
	- South African summer patterns	√	√
	- South African winter patterns	√	√
	- the South Westerly Buster	√	√
	- The Cape Doctor	√	√
	- the Black South Easter	√	√
1.17	METEOROLOGICAL INFORMATION	√	√
1.17.1	Weather analysis and forecasting	√	√
	- synoptic weather charts and symbols, station de-code	✓	√
	- significant (prognostic) weather charts	✓	√
	- upper winds and temperatures charts	√	√
1.17.2	Weather information for flight planning	√	√
	- interpretation of:	√	√
	– METAR	√	√
	- TAF	√	√
	- SPECI	√	√
	- SIGMET	√	√
1.17.3	Meteorological broadcasts for aviation	√	√
	- ATIS	√	√
	- VOLMET	√	√

REF	2.1 FLIGHT PLANNING AND PERFORMANCE – AEROPLANE	А
2.1.1	AIRSPEED TERMINOLOGY AND SYMBOLS	✓
	- IAS, RAS (CAS), TAS	√
	 Mach number 	√
	- VA, VNO, VNE, VX, VY	√
	- VMCG, VMCA, VMC, VS, VSO	√
	- VFO, VFE, VLO, VLE, VMO	√
	- V1, VR, V2, VREF, VLOF, VMBE	√
2.1.2	METEOROLOGICAL TERMINOLOGY	✓
	 International Standard Atmosphere (ISA) 	√
	- OAT, IOAT, TAT, SAT, RAT	√
	 Temperature deviation from ISA 	√
	 Pressure altitude, Density altitude 	√
	- QNH, QFE, QNE	√
2.1.3	AERODROME TERMINOLOGY	✓
	Runway length	√
	- Take-off run available (TORA)	√
	- Take-off run required (TORR)	√
	 Take-off distance available (TODA) 	√
	 Take-off distance required (TODR) 	√
	 – Landing distance available (LDA) 	√
	 Landing distance required (LDR) 	√
	- Clearway, stopway	√
	Displaced thresholds (permanent/temporary)	√
	 Accelerate-stop and accelerate-go 	√
	 Runway slope 	√
	Runway strength (LCN/PCN)	√

REF		Α
	Balanced and Unbalanced Field Lengths	1
	- WAT limits	1
2.1.4	AEROPLANE PERFORMANCE CLASSIFICATION	√
CAR 91.08.4	Class A, B, C and D aeroplanes	1
CAR 2011 121.08.3	Net take-off flight path	1
CAR 2011 121.08.4	En route limitations with one engine inoperative	√
CAR 2011 121.08.5	En route limitations with two engines inoperative	√
2.1.5	AEROPLANE PERFORMANCE GRAPHS	√
	USE OF B747 AEROPLANE MANUAL:	√
2.1.5.1	MISCELLANEOUS	√
	- Altimeter Setting - Station Pressure	√
	 Pressure Altitude and Density Chart 	√
	- Altimeter Setting - Station Pressure	√
	– Wind Vector Diagram	√
	- Drift and Wind Component Table	√
	 Fuel Tank Capacity SG vs Weight 	√
2.1.5.2	TAKE-OFF PERFORMANCE	√
	- Field Length vs Gross Weight Flaps 10	√
	- Climb Limit vs Gross Weight Flaps 10	√
	 Length vs Gross Weight Flaps 20 	√
	 Limit vs Gross Weight Flaps 20 	√
	 Take-off EPR Pressure Altitude vs Temperature 	√
	 Initial Climb EPR Pressure Altitude vs Temperature 	4
	- Take-off Speeds. Flaps 10 and 20	4
2.1.5.3	CLIMB	√
	Atmospheric Pressure Conversion. Inches/hPa	√
	 Optimum Altitude, Short Distance Cruise Altitude vs Brake Release Weight 	√
	 Altitude Capability. Cruise Gross Weight vs Flight Level and Temperature 	√

REF		А
	 En-Route Climb. (Time, Fuel, Distance, TAS) 	√
	Brake Release Weight vs Flight Level ISA	√
	Brake Release Weight vs Flight Level ISA	√
	 Brake Release Weight vs Flight Level ISA + 10° C 	√
	 Brake Release Weight vs Flight Level ISA + 10° C 	√
	 Brake Release Weight vs Flight Level ISA + 15° C 	√
	 Brake Release Weight vs Flight Level ISA + 15° C 	√
	Brake Release Weight vs Flight Level ISA + 20° C	√
	Brake Release Weight vs Flight Level ISA + 20° C	√
2.1.5.4	CRUISE PERFORMANCE	√
	- Mach 0.84. TAS - Fuel Flow ISA	√
	- Mach 0.84. TAS - Fuel Flow ISA + 10° C	√
	- Mach 0.84. TAS - Fuel Flow ISA + 15° C	√
	- LRC TAS - Fuel Flow ISA	√
	- LRC TAS - Fuel Flow ISA + 10° C	√
	- LRC TAS - Fuel Flow ISA + 15° C	√
2.1.5.5	INTEGRATED RANGE	√
	- LRC Planning FL 270 ISA −38.5°C	√
	- LRC Planning FL 280 ISA -40.5°C	√
	- LRC Planning FL 290 ISA -42.5°C	√
	- LRC Planning FL 310 ISA -46.4°C	√
	- LRC Planning FL 330 ISA -50.4°C	√
	- LRC Planning FL 350 ISA -54.3°C	√
	- LRC Planning FL 370 ISA −56.5°C	√
	- LRC Planning FL 390 ISA −56.5°C	√
	- Mach 0.84 Cruise FL 280 ISA -40.5°C	√
	- Mach 0.84 Cruise FL 290 ISA -42.5°C	√
	- Mach 0.84 Cruise FL 310 ISA -46.4°C	√

REF		Α
	- Mach 0.84 Cruise FL 330 ISA -50.4°C	√
	- Mach 0.84 Cruise FL 350 ISA -54.3°C	√
	- Mach 0.84 Cruise FL 370 ISA -56.5°C	√
	- Mach 0.84 Cruise FL 390 ISA -56.5°C	√
2.1.5.6	TOTAL TEMPERATURE AT ISA	√
2.1.5.7	SIMPLIFIED FLIGHT PLANNING	√
	- 0.84 Mach Cruise - Landing Weight 240 - 300,000 kg	√
	- 0.84 Mach Cruise - Landing Weight 180 - 240,000 kg	1
	- 350 KIAS Cruise - Landing Weight 180 - 300,000 kg	4
	 Long Range Cruise – Landing Weight 240 – 300,000 kg 	√
	 Long Range Cruise – Landing weight 180 – 240,000 kg 	√
	Step Climb to Optimum Altitude	1
	 Alternate Planning – Long Range Cruise 	1
	 In-Flight Diversion – Long Range Cruise 	1
2.1.5.8	DESCENT, GO-AROUND AND HOLD	√
	- Descent	1
	 Go-Around EPR, Approach and Landing Speeds 	√
	 Holding, VREF + 80 kts, VREF + 60 kts 	1
	- 2 Hour Hold LRC	1
2.1.5.9	LANDING PERFORMANCE	√
	- Flaps 25 - Anti-Skid Operative	√
	 Flaps 25 – Anti-Skid Inoperative 	1
	 Flaps 30 – Anti-Skid Operative 	1
	 Flaps 30 – Anti-Skid Inoperative 	1
	Correction Table - Brakes De-activated	1
	Correction Table - Anti-Skid Inoperative	1
2.1.5.10	OPERATION WITH ONE ENGINE INOPERATIVE	√
	 Altitude Capability 	√

REF		Α
	 Total Temperature at ISA 	√
	- LRC, EPR, IAS, Mach, Fuel Flow - FL 060 - 180	√
	- LRC, EPR, IAS, Mach, Fuel Flow - FL 190 - 270	√
	- LRC, EPR, IAS, Mach, Fuel Flow - FL 280 - 360	√
	 In-Flight Diversion – LRC – Distance vs Fuel/Time 	√
	 Holding – VREF + 80; EPR, KIAS, Fuel Flow/Engine 	√
2.1.6	MASS AND BALANCE	√
2.1.6.1	Terminology:	√
	 Arm, moment, reference datum, station, centre of gravity (CG) 	√
	- CG limits - forward and aft	√
	- mean aerodynamic chord (MAC), (LEMAC)	✓
	- Maximum ramp and taxi mass	√
	- Maximum zero fuel mass	√
	- Empty operating mass	√
	- Use of cargo pallets	√
	- Maximum floor load	√
2.1.6.2	Calculation of CG	√
2.1.6.3	Movement of CG in flight	√
2.1.6.4	Maximum load at station	√
2.1.6.5	Ballast	√
2.1.7	PET AND PNR	√
2.1.7.1	PET (point of equal time)	√
2.1.7.1.1	- all engines operating	√
2.1.7.1.2	- one engine inoperative (critical point)	√
2.1.7.1.3	– single leg/multi leg	√
2.1.7.2	PNR (point of no return)	√
2.1.7.2.1	- with/without fuel reserve	√
2.1.7.2.2	– single leg/multi leg	√

Flight performance & planning (A)

REF		Α
2.1.8	Fuel weight and Performance	√
	- specific weight	√
	- specific gravity	√
	- fuel consumption, fuel used, fuel flow, endurance	√
	- ANM/fuel ratio	√
	- GNM/fuel ratio	√
	- wind components- most economical flight level	√

REF	2.2 FLIGHT PLANNING AND PERFORMANCE – HELICOPTER	Н
2.2.1	AIRSPEED TERMINOLOGY AND SYMBOLS	√
	- IAS, RAS (CAS), TAS	√
	- VA, VNO, VNE, VX, VY	√
2.2.2	METEOROLOGICAL TERMINOLOGY	√
	 International Standard Atmosphere (ISA) 	√
	- OAT, IOAT, TAT, SAT, RAT	√
	 Temperature deviation from ISA 	√
	 Pressure altitude, Density altitude 	√
	- QNH, QFE, QNE	√
2.2.3	AERODROME TERMINOLOGY	√
	Runway length	✓
	 Displaced thresholds (permanent/temporary) 	√
CAR 91.08.3	HELICOPTER PERFORMANCE CLASSIFICATION	✓
	- Class 1, 2 and 3 Helicopters	√
2.4	HELICOPTER PERFORMANCE OPERATING LIMITATIONS	~
CAR 2011 127.08	 Take-off, take-off flight path 	√
	 En route with one or more engines inoperative 	√
	 Approach and landing 	√
2.2.5	HELICOPTER PERFORMANCE GRAPHS	✓
	USE OF S-92S PERFORMANCE MANUAL	✓
2.2.5.1	Airspeed limits	√
2.2.5.2	Take-off and landing	✓
	- Gross weight, bleed air off	√
	- Gross weight, bleed air on	✓
2.2.5.3	Mass and balance data	✓
	- Horizontal centre of gravity chart	✓
	- Weight and centre of gravity envelope	✓

REF		н
	- Cockpit and cabin weight and moment tables	✓
	- Usable fuel weight and moment table	✓
	- Engine oil weight and moment table	✓
2.2.5.4	Landing distance	✓
2.2.5.5	Take-off distance tables	✓
2.2.5.6	Forward climb performance, best rate of climb speed tables	✓
2.2.5.7	Hover OGE	✓
	- Take-off power bleed off	✓
	- Take-off power bleed on	✓
2.2.6	MASS AND BALANCE	✓
2.2.6.1	Terminology:	✓
	 Arm, moment, reference datum, station, centre of gravity (CG) 	√
	- CG limits - forward and aft	✓
	- CG limits - lateral	✓
	- Maximum zero fuel mass	✓
	- Empty operating mass	✓
	- Use of cargo pallets	✓
	- Maximum floor load	✓
2.2.6.2	Calculation of CG	✓
2.2.6.3	Movement of CG in flight	✓
2.2.6.4	Maximum load at station	✓
2.2.6.5	Ballast	✓
2.2.7	PET AND PNR	✓
2.2.7.1	PET (point of equal time)	✓
2.2.7.1.1	- all engines operating	✓
2.2.7.1.2	- one engine inoperative (critical point)	✓
2.2.7.1.3	- single leg/multi leg	✓
2.2.7.2	PNR (point of no return)	✓

Flight performance & planning (H)

REF		Н
2.2.7.2.1	- with/without fuel reserve	√
	- single leg/multi leg	√
2.2.8	Fuel weight and Performance	√
	- specific weight	√
	- specific gravity	√
	- fuel consumption, fuel used, fuel flow, endurance	√
	- ANM/fuel ratio	√
	- GNM/fuel ratio	√

REF	2. RADIO AIDS	Α	Н
3.1	Basic Radio Theory	√	√
3.1.1	Electromagnetic waves	√	√
	- frequency, wave length, cycle, phase, amplitude	√	√
	- frequency bands	√	√
	- sidebands, double sideband, single sideband,	√	√
	- band width	√	√
	- carrier wave, modulation, demodulation	√	√
	- amplitude modulation	√	√
	- frequency modulation	√	√
	- pulse modulation	√	√
	 designation of emission 	√	√
	- signal/noise ratio	√	√
3.1.2	Antennas	√	√
	- characteristics	√	√
	- polarisation	√	√
	– polar diagram	√	√
	- types of antennas	√	√
3.1.3	Wave propagation	√	√
	- ground waves	√	√
	- direct waves	√	√
	- sky waves	√	√
	- ionosphere, critical angle, skip distance	√	√
	- dead space, refraction	√	√
	- fading	√	√
	 factors affecting propagation (reflection, absorption, attenuation, coastline, mountain, static) 	✓	√
3.2	AUTOMATIC DIRECTION FINDER (ADF)	√	√
	ADF loop theory, rotating and fixed loop antennas	√	√

REF		Α	Н
	- principles	√	√
	- frequencies	√	√
	- presentation and interpretation (RBI and RMI)	√	√
	Non-Direction beacons (NDB)	√	√
	- range and coverage	√	√
	- errors and accuracy	√	√
	- factors affecting range and accuracy	√	√
3.3	VHF OMNI-DIRECTIONAL RANGE (VOR)	√	√
	- principles	√	√
	- frequencies	√	√
	 presentation and interpretation 	√	√
	- range and coverage	√	√
	- errors and accuracy	√	√
	- factors affecting range and accuracy	√	√
	- CDI and RMI	√	√
	- Doppler VOR	√	√
3.4	DISTANCE MEASURING EQUIPMENT (DME)	√	√
	- principles	√	√
	- frequencies	√	√
	 presentation and interpretation 	√	√
	- range and coverage	√	√
	- factors affecting range and accuracy	√	√
	- Precision DME (DME/P)	√	√
3.5	INSTRUMENT LANDING SYSTEM (ILS)	√	√
	- principles	√	√
	- frequencies	√	√
	 presentation and interpretation 	√	√
	- range and coverage	√	√

REF		Α	Н
	- errors and accuracy	√	√
	- factors affecting range and accuracy	√	√
3.6	MICROWAVE LANDING SYSTEM (MLS)	√	√
	- principles	√	√
	- frequencies	√	√
	- presentation and interpretation	√	√
	- range and coverage	√	√
	- errors and accuracy	√	√
	- factors affecting range and accuracy	√	√
3.7	BASIC RADAR PRINCIPLES	√	√
	- pulse techniques and associated terms	√	√
3.8	GROUND RADAR	√	√
	- principles	√	√
	 presentation and interpretation 	√	√
	- coverage	√	√
	- range	√	√
	- errors and accuracy	√	√
	- factors affecting range and accuracy	√	√
3.9	AIRBORNE WEATHER RADAR	√	√
	- principles	√	√
	 presentation and interpretation 	√	√
	- coverage	√	√
	- range	√	√
	- errors and accuracy	√	√
	- factors affecting range and accuracy	√	√
	 application for navigation 	√	√
3.10	SECONDARY SURVEILLANCE RADAR (SSR)	√	√
	- principles	√	√

REF		Α	Н
	- presentation and interpretation	√	√
	- modes and codes, including mode S	√	√
3.11	RADIO ALTIMETER	√	√
	- principles	√	√
	- frequency band	√	√
	- presentation and interpretation	√	√
	- errors and accuracy	√	√
3.12	GROUND PROXIMITY WARNING SYSTEM (GPWS)	√	√
	- principles	√	√
	- warning modes	√	√
3.13	TRAFFIC ALERT AND COLLISION AVOIDANCE SYSTEM (TCAS)	√	√
	- principles of operation	√	√
	- warning modes	√	√
3.14	DOPPLER	√	√
	- principles of operation	√	√
	- ground speed and drift calculation	√	√
	- accuracy and reliability	√	√
	- flight deck equipment	√	√
3.15	EMERGENCY LOCATOR TRANSMITTER (ELT)	√	√
	- principles	√	√
	- frequencies	√	√
	- testing	√	√
3.16	AREA NAVIGATION	√	√
	VOR/DME area navigation (RNAV)	√	√
	- principle of operation	√	√
	 advantages and disadvantages 	√	√
	- accuracy, reliability and coverage	√	√
	- use and limitations	√	√

	- flight deck equipment	√	√
REF		А	Н
3.17	SATELLITE ASSISTED NAVIGATION: (GPS/GNSS)	√	√
3.17.1	Global Positioning Service (GPS)	√	√
	- system capability	√	√
3.17.1.1	The GPS system	√	√
	- segments	√	√
	- timing	√	√
	- frequency and coding	√	√
	operating principles	√	√
	- limitations	√	√
	- coverage	√	√
	- reliability/integrity	√	√
	- accuracy and errors	√	√
	- dilution of precision	√	√
	- System Components and principle of operation	√	√
	- advantages and disadvantages	√	√
	- Navigation System Performance Requirements	√	√
	- Authorisation and Documentation	√	√
	- Errors and Limitations	√	√
	- Human Factors and GNSS	√	√
3.17.2	Differential GPS (DGPS)	√	√
	- principle of operation	√	√
	- pseudolite/GPS	√	√
3.17.3	GLONASS	√	√
	- basic concepts	√	✓

REF	3. NAVIGATION	Α	Н
4.1	THE EARTH	√	√
4.1.1	FORM OF THE EARTH	√	✓
	- polar axis, direction and rate of rotation	√	√
	- great circles, small circles and rhumb lines	√	√
	- meridians of longitude, limits east/west, prime meridian	√	✓
	- difference of longitude	√	√
	- convergency and conversion angle	√	√
	- latitude, limits north/south, equator	√	✓
	- difference of latitude	√	√
	 use of co-ordinates to fix position 	√	√
4.1.2	DIRECTION	√	√
	- true north	√	√
	- magnetic north	√	√
	- isogonals and variation east and west	√	√
	- compass north	√	√
	- application of compass deviation	√	√
	- radio bearings: QTE, QDR, QDM, QUJ	√	√
4.1.3	DISTANCE	√	√
	- units of distance: nautical and statute miles, kilometres	√	√
	- metres, feet	√	√
	- conversion from one unit to another	√	√
	 relationship between nautical miles and minutes of latitude 	√	√
4.2	THE SOLAR SYSTEM AND TIME	√	√
4.2.1	- seasonal and apparent movements of the sun	√	√
	– apparent solar day	√	√
	– mean solar day	√	√
	- sidereal day	√	√
4.2.2	- Equinox, solstice, aphelion, perihelion	√	√

REF		Α	н
	- Tropics of Cancer and Capricorn	√	√
4.2.3	- Local mean time (LMT), zone time and standard time	√	√
	- conversions of arc to time	√	√
	- co-ordinated universal time (UTC)	√	√
	- time conversions	√	√
	- international date line	√	√
4.2.4	 determination of sunrise, sunset, civil twilight 	√	√
	 variation of time with sunrise, sunset, latitude and altitude 	√	√
	- sunrise and sunset along track	√	√
	- moonrise and moonset	√	√
4.3	CHARTS	√	√
4.3.1	Chart projection theory	√	√
	- types of projection: Azimuthal/Plane, cylindrical, conical	√	√
	- orthomorphic/conformal charts	√	√
	 scale, representative fraction, scale factor and calculations 	√	√
4.3.2	Mercator chart	√	✓
4.3.2.1	Method of construction and properties	√	√
	 representation of great circle, rhumb lines, meridians and parallels of latitude 	√	√
	 plotting radio bearings 	√	√
	- scale variation and calculations	√	√
	- measurement or calculation or tracks and distance	√	√
4.3.2.2	Meridional parts	√	√
4.3.2.3	Transverse Mercator	√	√
	- method of construction	√	√
	- properties	√	√
4.3.3	Lamberts Conformal Conic	√	~
	- method of construction and properties	√	√

REF		Α	Н
	 representation of great circle, rhumb lines, meridians and parallels of latitude 	√	✓
	 plotting radio bearings 	√	√
	- scale variation and calculations	>	>
	- measurement or calculation or tracks and distance	√	√
4.3.4	Polar Stereographic	√	√
	- method of construction and properties	√	√
	 representation of great circle, rhumb lines, meridians and parallels of latitude 	√	✓
	 plotting radio bearings 	√	√
	- scale variation and calculations	√	√
	- measurement or calculation or tracks and distance	√	√
4.3.5	Grid Navigation	√	~
	use on polar stereographic chart	√	√
	- grid north, isogrivs, grivation	~	>
	- calculation of true, magnetic and grid headings or tracks	√	√
4.4	Relative Velocity	√	~
	- speed of opening and closing	√	√
	- aircraft separation	√	√
	- controlled time of arrival by changing speed	√	√

REF	4. INSTRUMENTS AND ELECTRONICS	Α	Н
5.1	AIR DATA INSTRUMENTS	√	√
5.1.1	PITOT AND STATIC SYSTEM	√	√
	- pitot tube, construction and principles of operation	√	√
	- static source	√	√
	- malfunction	√	√
	- heating	√	√
	- alternate static source	√	√
5.1.2	ALTIMETER	√	√
	- construction and principles of operation	√	√
	- simple, sensitive and servo assisted altimeters	√	√
	- errors and tolerances	√	√
	- settings, QNH, QFE, QNE	√	√
	- pressure, true and absolute altitude	√	√
	- altitude alert	√	√
5.1.3	AIRSPEED INDICATOR (ASI)	√	√
	- construction and principles of operation	√	√
	- meaning of coloured sectors	√	√
	- maximum speed indicator	√	√
	- errors, blockages and leaks	√	√
5.1.4	MACHMETER	√	√
	- Mach number formula	√	n/a
	- construction and principles of operation	√	n/a
	- display	√	n/a
	- errors, blockages and leaks	√	n/a
	- calculations	√	n/a
5.1.5	VERTICAL SPEED INDICATOR (VSI)	√	√
	- construction and principles of operation	√	√
	- aneroid and instantaneous VSI (IVSI)	√	√

REF		Α	Н
	- errors	√	√
5.1.6	AIR DATA COMPUTER (ADC)	4	√
	- principle of operation	1	√
	- input and output data, signals	4	~
	- uses of output data	√	√
5.2	GYROSCOPIC INSTRUMENTS	√	√
5.2.1	GYROSCOPIC FUNDAMENTALS	√	√
	- theory of gyroscopic forces (stability, precession)	√	√
	- types, construction and principles of operation:	√	√
	– vertical gyro	1	√
	– rate gyro	√	√
	- tied gyro	√	√
	apparent wander/drift	√	√
	- real wander/drift	4	√
	- mountings, gimbals	√	√
	- drive types: electrical, vacuum system	1	√
5.2.2	DIRECTIONAL GYRO (DG)	4	√
	- construction	√	7
	- principle of operation	1	7
	- limitations	1	7
	- calculation of drift	1	7
5.2.3	REMOTE INDICATING COMPASS	4	7
	- construction and principle of operation	√	√
	- components	√	7
	- modes of operation	√	√
	- application, uses of output data	4	√
5.2.4	ARTIFICIAL HORIZON (AH)	4	√
	- construction and principle of operation	✓	✓

REF		Α	Н
	- turn and acceleration errors	√	√
	- application, uses of output data	√	√
5.2.5	TURN AND SLIP INDICATOR	√	√
	- construction and principle of operation	√	√
	- errors	√	√
	- Turn Co-ordinator	√	√
	- rate of turn and angle of bank	√	√
5.3	INERTIAL NAVIGATION SYSTEM (INS)	√	n/a
5.3.1	Principles and practical application	√	n/a
	– gyroscopic principles	√	n/a
	- platform mounting	√	n/a
	 accelerometer principles 	√	n/a
	- integrator principles	√	n/a
	- Shuler-tuned platform	√	n/a
	- navigation computer	√	n/a
5.3.2	Alignment procedures	√	n/a
	- gyro compassing	√	n/a
	- levelling	√	n/a
5.3.3	Accuracy, reliability, errors and coverage	√	n/a
5.3.4	Flight deck equipment and operation	√	n/a
	- mode selector unit (MSU)	√	n/a
	- control display unit (CDU)	√	n/a
	- horizontal situation indicator (HSI)	√	n/a
5.3.5	INS Operation	√	n/a
	- normal flight, position and waypoint entries	√	n/a
	- flight plan changes	√	n/a
	- bypassing waypoint	√	n/a
	- change of waypoint data	√	n/a

REF		Α	Н
	- system check and updating	√	n/a
5.4	INERTIAL REFERENCE SYSTEM (IRS)	√	n/a
	- ring laser gyro	√	n/a
	- strap-down systems	√	n/a
	- platform alignment	√	n/a
	- limitations and accuracy	√	n/a
	- advantages	√	n/a
5.5	ELECTRONIC FLIGHT INSTRUMENT SYSTEM (EFIS)	√	n/a
	- information display types	√	√
	- data input	√	√
	- control panel, display unit	√	√
	typical aircraft installation	√	√
5.6	FLIGHT MANAGEMENT SYSTEM (FMS)	√	√
	– general principles	√	√
	- inputs and outputs of data	√	√
5.7	FLIGHT DIRECTOR SYSTEM	√	✓
	- principle of operation	√	√
	- input sources	√	√
	- operation of attitude director indicator (ADI)	√	√
	- operation of horizontal situation indicator (HSI)	√	√
5.8	AUTOPILOT	√	✓
5.8.1	General principles of operation	√	√
	- types: single axis, two axis, three axis	√	√
	- lateral modes (pitch)	√	√
	- longitudinal modes (roll)	√	√
	- combined modes (roll and pitch)	√	√
5.8.2	Yaw damper	√	n/a
	- function	√	n/a

REF		Α	Н
	- components	√	n/a
	- principle of operation	√	n/a
5.8.3	Automatic pitch trim	√	√
	- function	√	n/a
	- input data, signals	√	n/a
	- mode of operation	√	n/a
	- horizontal stabiliser, trim tab actuator	√	n/a
	- system monitoring, safety of operation	√	n/a
5.9	WARNING AND RECORDING EQUIPMENT	√	√
5.9.1	Stall warning	√	n/a
	- components and principle of operation	√	n/a
5.9.2	Flight data recorder	√	√
	- function	√	√
	- components	√	√
	- operation	√	√
	- system monitoring	√	√
5.9.3	Cockpit voice recorder	√	√
	- function	√	√
	- components	√	√
	- operation	√	√
5.9.4	Rotors and engine over/under-speed warning	n/a	✓
	- function	n/a	√
	- input data, signals	n/a	√
	- display, indicators, function test	n/a	√
	- effects on operation in case of failure	n/a	√
5.10	POWERPLANT AND SYSTEM MONITORING INSTRUMENTS	√	√
5.10.1	Principles, presentation and operational use of:	1	√
	- pressure and temperature sensors	√	√

REF		Α	Н
	- pressure and temperature indicators	√	√
	- RPM indicator, piston and turbine engines	√	√
	- fuel gauge and fuel flow indicators	√	√
	- Torque meter	√	√
	- Vibration monitors	√	√
	- Chip detection	n/a	√
5.10.2	Air temperature indictors	√	√
	- sensors	√	√
	- ram rise, recovery factor	√	n/a
	- SAT, RAT AND TAT	√	n/a
5.11	MAGNETISM	√	√
5.11.1	TERRESTRIAL MAGNETISM	√	√
	 resolution of the earth's magnetic field into vertical and horizontal components 	√	√
	- the effects of change of latitude on these components	√	√
	- directive force, isodynes	√	√
	- magnetic dip, isoclinals	√	√
	- variation, isogonals, agonic line	√	√
	- changes of the earth's magnetic field, secular, periodic	√	√
5.11.2	AIRCRAFT MAGNETISM	√	√
	- horizontal hard iron, components P and Q	√	√
	- vertical soft iron	√	√
	- compass swing, calculation of coefficients A, B and C	√	√
	- correction of coefficients A, B and C	√	√
	- deviation on any heading	√	√
	 change of deviation with change of latitude and aircraft heading 	√	√
	- turning and acceleration errors	√	√

REF		Α	Н
5.11.3	MAGNETIC COMPASS	✓	√
	- components and principle of operation	√	√
	- serviceability tests	√	√
	- adjustment and compensation of direct reading compass	√	√

REF	6.1 AIRCRAFT TECHNICAL AND GENERAL- AEROPLANE	Α
6.1.1	AIRFRAME AND SYSTEMS	✓
6.1.1.1	Fuselage	√
	- types of construction	✓
	- structural components and materials used	✓
	- stress	✓
6.1.1.2	Cockpit and passenger cabin windows	✓
	- construction - laminated glass, acrylic plastic	√
	- structural limitations	√
6.1.1.3	Wings and stabilising surfaces	✓
	- types of construction	✓
	- structural components and materials used	✓
	- stress relief of engines	✓
6.1.1.4	Landing gear	✓
	- types	✓
	- construction	✓
	- locking devices and emergency extension systems	✓
	 accidental retraction prevention devices 	✓
	 position, movement lights and indicators 	✓
	nosewheel steering	✓
	- wheels and tyres (construction, markings, limitations)	✓
	- braking systems	✓
	- construction, single and multi-plate disc brakes	✓
	– parking brake	✓
	- operation of anti-skid system	✓
	- operation of auto brake system	✓
	- indications and warning systems	✓

REF		Α
6.1.1.5	Hydraulics	√
6.1.1.5.1	Basic principles of hydromechanics	✓
	- hydraulic fluids	√
	- components and operation of basic hydraulic system	✓
6.1.1.5.2	Hydraulic systems	✓
	- main, standby and emergency systems	√
	- operation, indicators and warning systems	√
	- ancillary systems	√
6.1.1.6	Air driven systems	✓
6.1.1.6.1	Pneumatic systems	√
	– power sources	✓
	- components, construction and operation of basic system	✓
	- potential failures, warning devices, indicators	✓
6.1.1.6.2	Air conditioning system	√
	- heating and cooling	√
	- construction, functioning and controls	√
	- warning devices	√
6.1.1.6.3	Pressurisation	✓
	- cabin altitude, maximum cabin altitude	√
	- differential pressure	√
	- pressurised zones in the aircraft	√
	- operation and indicators	✓
	- safety devices and warning systems	✓
	- rapid decompression, cabin altitude warning	✓
	- emergency procedures	✓
6.1.1.6.4	De-ice systems	√
	 pneumatic leading edge de-icing of wings/control surfaces 	✓
	- components, construction and operation	✓

REF		Α
	 use and operational limitations 	✓
6.1.1.6.5	Anti-ice systems	✓
	 aerofoil, control surfaces, powerplant, air intakes, windshield 	✓
	- components, construction and operation	✓
	- use and operational limitations	✓
	- ice warning system	✓
6.1.1.7	Non-pneumatic operated de-ice and anti-ice systems	✓
6.1.7.1	Components, construction and operation of:	✓
	- air intake	✓
	- pitot, static pressure sensor and stall warning devices	√
	- windshield	✓
	- weeping wing system	✓
	- rain repellent system	✓
6.1.7.2	Fuel dumping system	✓
6.1.7.3	Fuel system monitoring	✓
	- operation, indicators, warning systems	✓
6.1.1.8	ELECTRICS	√
6.1.1.8.1	Direct Current (DC)	√
6.1.1.8.2	DC Generator	√
	- principle of operation	✓
6.1.1.8.3	Current distribution	✓
	- DC bus bars	√
	- ammeter and voltmeter	√
	- annunciators	✓
	- inverter	√
6.1.1.8.4	Alternating current	√
	- single and multi-phase AC	✓

REF		Α
	- frequency	√
	- phase shift	√
	- AC components	√
6.1.1.8.5	Alternators	√
	- 3 phase	√
	- brushless: construction and operation	√
	- constant speed and integrated drives	√
6.1.1.8.6	AC power distribution	√
	- construction, operation and monitoring	√
	protection circuits, paralleling of AC generators	√
	- AC bus bars	√
6.1.1.8.7	Transformers	√
	- function, types and applications	√
6.1.1.8.8	Transformer/rectifier units	√
6.1.2	POWERPLANT	√
	Turbine engine	√
6.1.2.1	Principle of operation	√
6.1.2.2	Types of construction	√
	- centrifugal	√
	- axial flow	√
6.1.2.3	Engine construction	√
6.1.2.3.1	Air inlet	√
	- function	√
6.1.2.3.2	Compressor	√
	- function	√
	- construction and mode of operation	√
	- effects of damage	√
	- compressor stall and surge (cause, recognition, avoidance)	√

REF		Α
	- compressor characteristics	✓
6.1.2.3.3	Combustion chamber	✓
	- function	✓
	- mixing ratios	✓
	- fuel injectors	✓
	- thermal load	✓
6.1.2.3.4	Turbine	✓
	- function, construction and working principles	✓
	- thermal and mechanical stress	√
	- effects of damage	√
	- monitoring of exhaust gas temperature	√
6.1.2.3.5	Jet pipe	√
	- function	√
	- different types	✓
	 noise silencing devices 	✓
6.1.2.3.6	Pressure, temperature and airflow in a turbine engine	✓
6.1.2.3.7	Reverse thrust	√
	- function, type and principles of operation	√
	- degree of efficiency	√
	- use and monitoring	√
6.1.2.3.8	Performance and thrust augmentation	√
	- water injection, principles of operation	√
	- use and system monitoring	√
6.1.2.3.9	Bleed air	√
	 effect of use of bleed air on thrust, exhaust gas temperature 	√
	RPM and pressure ratio	√
	- effect of use of bleed air on performance	√
6.1.2.3.10	Auxiliary gearbox	√

REF		Α
	- function	√
6.1.2.4	Turbine engine systems	√
6.1.2.4.1	Ignition	√
	- function, types, components, operation, safety aspects	√
6.1.2.4.2	Starter	√
	- function, type, construction and mode of operation	√
	 control and monitoring 	√
	- self-sustaining and idle speeds	√
6.1.2.4.3	Engine start malfunctions	√
	- types, cause and avoidance	✓
6.1.2.4.4	Fuel system	✓
	 construction and components 	✓
	 operation and monitoring 	✓
	- malfunctions	✓
6.1.2.4.5	Lubrication	✓
	 construction and components 	✓
	 operation and monitoring 	√
	- malfunctions	√
6.1.2.4.6	Fuel	~
	- effects of temperature	~
	- impurities and additives	~
6.1.2.4.7	Thrust	√
	- thrust formula	✓
	- flat rated engine	√
	 thrust as a function of airspeed, air density, pressure, temperature and RPM 	✓
6.1.2.4.8	Engine operating and monitoring	√
6.1.2.5	Auxiliary Power Unit (APU)	√

REF		Α
	- function, types	√
	- location	√
	- operation and monitoring	√
6.1.2.6	Ram air turbine	√
	- function	√
6.1.3	Emergency equipment	✓
6.1.3.1	Smoke detection	✓
	- location, indicators, function test	√
6.1.3.2	Fire detection and fire fighting	√
	- location, warning mode, function test	✓
6.1.3.3	Oxygen systems	√
	- types of systems, principles of operation	✓
	- use and safety measures	√
6.1.4	Special Operational Procedures and Hazards	√
6.1.4.1	Ground de-icing	✓
	- icing conditions	✓
	- de-icing, ant-icing, types of fluids	✓
6.1.4.2	Bird strike risk and avoidance	✓
6.1.4.3	Noise abatement	✓
	- influence of the flight procedure (departure, cruise or	✓
	approach)	✓
	- influence by the pilot (power setting, low drag/power)	✓
6.1.4.4	Fire/Smoke	√
	- engine fire	✓
	- fire in the cabin, cockpit, freight compartment	✓
	 selection of appropriate fire extinguishing agents with respect to fire classification 	√

REF		Α
	 actions in case of over-heated brakes after aborted take-off and landing 	✓
	- smoke in the cockpit and cabin (effects and actions taken)	√
6.1.4.5	Windshear, microburst	√
	- effects and recognition during approach/departure	✓
	- actions to avoid and actions taken during encounter	√
6.1.4.6	Wake turbulence	√
	- cause	✓
	- influence of speed and mass, wind	✓
	 actions taken during approach, landing, take-off, crossing behind 	√
6.1.4.7	Contaminated runways	√
	- types of contamination	√
	- aquaplaning: types and avoidance	√
	- braking action and braking coefficient	✓
6.1.5	SUBSONIC AERODYNAMICS	√
6.1.5.1	Laws and definitions	√
	- units of measurement	√
	- Newton's Laws of Motion	√
	- velocity	√
	 temperature and density 	√
	- static and dynamic pressure	√
	- momentum	√
	- acceleration	√
	- equilibrium	√
6.1.5.2	Airspeeds	√
	- Indicated Airspeed (IAS)	√
	- Calibrated Airspeed (CAS)	√

REF		Α
	- Equivalent Airspeed (EAS)	√
	- True Airspeed (TAS)	√
	- Mach number	√
6.1.5.3	Shape of an aerofoil	√
	- taper ratio	√
	- root chord, tip chord and mean aerodynamic chord	√
	- aspect ratio, angle of sweepback	√
	- high speed aerofoils	√
6.1.5.4	Controls	√
	Method of operation of:	√
	- basic elevator, ailerons, rudder and combinations	√
	- inboard ailerons, flaperons, roll control spoilers	√
	- combined aileron and spoiler controls	√
	- speed brakes, ground spoilers	√
	- variable elevator	√
	- indicators and warning devices	✓
	- mode of actuation: mechanical, hydraulic, fly by wire	✓
	- artificial feel	√
	- indicators, warning devices	√
6.1.5.5	Trimming control systems	√
	- fixed tabs, balance tab, anti-balance tab, servo tab	√
	- spring tab	√
	- variable incidence tailplane	√
6.1.5.6	High lift devices	√
6.1.5.6.1	Trailing edge flaps	√
	- slotted and multiple slotted flaps	√
	- the Fowler flap and slotted Fowler flap	√

REF		Α
6.1.5.6.2	Leading edge devices	√
	- Krueger flap	√
	- slats and slots, automatic slots	√
6.1.6	HIGH SPEED FLIGHT	√
6.1.6.1	Flight speed classification	√
	- subsonic	√
	- Transonic	√
	- Supersonic	√
6.1.6.2	Speed of sound	√
	- Mach number and formula	√
	- effect of temperature and altitude	√
	- compressibility	√
	- free stream Mach number	√
	- local Mach number	√
6.1.6.3	Shockwaves	√
	- propagation of pressure waves	√
	- normal shockwave	✓
	- critical Mach number	✓
	- accelerating beyond Mcrit	✓
	- influence of:	√
	- Mach number	✓
	- control deflection	✓
	- angle of attack	✓
	- aerofoil thickness	✓
	- angle of sweep	✓
	- area rule	✓
	- influence on:	✓
	- CL and CD	✓

REF		Α
	- aerodynamic heating	√
	- shock stall/Mach buffet	√
	- influence on:	√
	- drag	√
	- pitch (Mach trim)	√
	- contribution of:	√
	 movement of centre of pressure 	√
	- angle of sweep	√
	- downwash	√
	- methods of reducing/delaying transonic drag rise	√
	- control problems in transonic flight	√
6.1.6.4	SUPERSONIC AERODYNAMICS	√
	- oblique shockwaves	√
	- Mach cone	√
	- influence of aircraft weight	√
	- expansion waves	✓
	- centre of pressure	√
	- wave drag	√
	 control surface hinge movement 	√
	- control surface efficiency	√

REF	6.2 AIRCRAFT TECHNICAL AND GENERAL – HELICOPTER	Н
6.2.1	AIRFRAME AND SYSTEMS	✓
6.2.1.1	Helicopter configurations	✓
	- single rotor	✓
	- tandem rotor	✓
	- coaxial rotor	✓
	- side by side rotor	✓
6.2.1.2	Controls and rotors	✓
	Control systems	✓
	- types, components, adjustments	✓
	- primary controls (cyclic, collective, directional)	✓
6.2.1.3	Rotorheads	✓
	- types, components, operation	✓
6.2.1.4	Tail rotors/Notar	✓
	- types, components, operation	✓
6.2.1.5	Blades	✓
	- types, construction, material, adjustment, balancing	✓
6.2.1.6	Control surfaces	✓
	- vertical and horizontal stabilisers, construction, material	✓
6.2.1.7	Fuselage	✓
	- types of construction	✓
	- structural components and materials	✓
6.2.1.8	Cockpit and cabin windows	✓
	- construction	✓
	- structural limitations	✓
6.2.1.9	Landing gear	✓
	- types: floats, skids, wheels	✓

REF		н
	- construction	√
	- locking devices and emergency extension systems	√
	accidental retraction prevention devices	√
	 position, movement lights and indicators 	√
	- wheels and tyres (construction, markings, limitations)	√
	- braking systems	√
	- construction	√
	– parking brake	√
	- operation, indications and warning systems	√
6.2.1.10	Transmission systems	√
6.2.1.10.1	Drive shafts	√
	- types, components, materials	√
6.2.1.10.2	Gearboxes	√
	- types, construction, material, lubrication, indications	√
6.2.1.10.3	Clutches	√
	- types, components	√
6.2.1.10.4	Freewheeling	√
	- types, components	√
6.2.1.10.5	Rotor brake	√
	- components, construction	√
6.2.1.10.6	Inspection	√
	- vibration, balancing, tracking	√
6.2.1.11	Hydraulics	√
6.2.1.11.1	Basic principles of hydromechanics	√
	- hydraulic fluids	√
	- components and operation of basic hydraulic system	√
6.2.1.11.2	Hydraulic systems	√
	- main, standby and emergency systems	✓

REF		н
	- operation, indicators and warning systems	✓
	- ancillary systems	✓
	- auxiliary systems	✓
6.2.1.12	Air driven systems	√
6.2.1.12.1	Pneumatic systems	√
	– power sources	√
	- components, construction and operation of basic system	√
	potential failures, warning devices, indicators	√
6.2.1.12.2	Air conditioning system	√
	- heating and cooling	√
	- construction, functioning and controls	√
	- warning devices	√
	- ram air ventilation	√
6.2.1.13	De-ice and anti-ice systems	√
	- components, construction and operation of:	√
	- air intake, rotors (main and tail rotor)	√
	- pitot, static pressure sensor	√
	- windshield	√
	- control surfaces	√
	- rain repellent systems	√
	- ice warning system	√
6.2.1.14	Fuel dumping system	√
6.2.1.15	Fuel system monitoring	√
	- operation, indicators, warning systems	√
6.2.1.16	ELECTRICS	√
6.2.1.16.1	Direct current	√
6.2.1.16.2	DC Generator	√
	- principle of operation	✓

REF		Н
6.2.1.16.3	Current distribution	√
	- DC bus bars	✓
	- ammeter and voltmeter	✓
	- annunciators	✓
	- inverter	✓
6.2.1.16.4	Alternating current	✓
	- single and multi-phase AC	✓
	- frequency	✓
	- phase shift	✓
	- AC components	✓
6.2.1.16.5	Alternators	✓
	- 3 phase	✓
	- brushless: construction and operation	✓
	- constant speed and integrated drives	✓
6.2.1.16.6	AC power distribution	✓
	- construction, operation and monitoring	✓
	protection circuits, paralleling of AC generators	✓
	- AC bus bars	√
6.2.1.16.7	Transformers	✓
	- function, types and applications	√
6.2.1.16.8	Transformer/rectifier units	✓
6.2.2	Turbine engine	√
6.2.2.1	Principle of operation	✓
6.2.2.2	Types of construction	√
	- centrifugal	√
	– axial flow	√
6.2.2.3	Engine construction	√
6.2.2.3.1	Air inlet	√

REF		Н
	- function	√
6.2.2.3.2	Compressor	✓
	- function	✓
	- construction and mode of operation	✓
	- effects of damage	✓
	- compressor stall and surge (cause, recognition, avoidance)	✓
	 compressor characteristics 	✓
6.2.2.3.3	Combustion chamber	✓
	- function	√
	- mixing ratios	✓
	- fuel injectors	✓
	- thermal load	✓
6.2.2.3.4	Turbine	✓
	- function, construction and working principles	✓
	- thermal and mechanical stress	✓
	- effects of damage	✓
	- monitoring of exhaust gas temperature	✓
6.2.2.3.5	Pressure, temperature and airflow in a turbine engine	√
6.2.2.4	Turbine engine systems	√
6.2.2.4.1	Ignition	✓
	- function, types, components, operation, safety aspects	✓
6.2.2.4.2	Starter	✓
	- function, type, construction and mode of operation	√
	- control and monitoring	√
	- self-sustaining and idle speeds	√
6.2.2.4.3	Engine start malfunctions	√
	- cause and avoidance	√
6.2.2.4.4	Fuel system	✓

REF		Н
	- construction and components	✓
	 operation and monitoring 	✓
	- malfunctions	✓
6.2.2.4.5	Lubrication	✓
	- construction and components	✓
	 operation and monitoring 	√
	- malfunctions	√
6.2.2.4.6	Fuel	√
	- effects of temperature	√
	- impurities and additives	√
6.2.2.4.7	Engine operating and monitoring	√
6.2.3	Emergency equipment	√
6.2.3.1	Smoke detection	√
	- location, indicators, function test	✓
6.2.3.2	Fire detection and fire fighting	√
	- location, warning mode, function test	✓
6.2.3.3	Oxygen systems	√
	- types of systems, principles of operation	√
	- use and safety measures	√
6.2.4	Special Operational Procedures and Hazards	√
6.2.4.1	Ground de-icing	✓
	- icing conditions	√
	- de-icing, ant-icing, types of fluids	√
6.2.4.2	Bird strike risk and avoidance	√
6.2.4.3	Noise abatement	√
	 influence of the flight procedure (departure, cruise or approach) 	√
	- influence by the pilot (power setting, track of helicopter)	✓

REF		Н
6.2.4.4	Fire/Smoke	√
	- carburettor fire	√
	– engine fire	✓
	- fire in the cabin, cockpit, freight compartment	√
	 selection of appropriate fire extinguishing agents with respect to fire classification 	✓
	- smoke in the cockpit and cabin (effects and actions taken)	✓
6.2.4.5	Windshear, microburst	√
	- effects and recognition during approach/departure	✓
	- actions to avoid and actions taken during encounter	✓
6.2.4.6	Wake turbulence	✓
	- cause	√
	- influence of speed and mass, wind	√
	 actions taken during approach, landing, take-off, crossing behind 	✓
6.2.4.7	Contaminated runways	✓
	- types of contamination	√
	- braking action and braking coefficient	✓
6.2.4.8	Rotor downwash	✓
6.2.4.9	Emergency procedures	✓
	- influence by technical problems:	√
	– engine failure	√
	- tail rotor/directional control failure	√
	- ground/resonance	✓
	- blade/stall	√
	- settling with power	✓
	- overpitch	√
	- overspeed	✓

REF		н
	sudden stoppage	✓
	 dynamic rollover/mast bumping 	✓
6.2.5	SUBSONIC AERODYNAMICS	✓
6.2.5.1	Laws and definitions	✓
	- units of measurement	✓
	- Newton's Laws of Motion	✓
	- mass and weight	✓
	- inertia	✓
	- velocity	✓
	- temperature and density	✓
	- static and dynamic pressure	✓
	- momentum	✓
	- acceleration	✓
	- equilibrium	✓
	- motion on a curved path	✓
	- work, power and energy	✓
	Airspeeds	√
	- Indicated Airspeed (IAS)	√
	- Calibrated Airspeed (CAS)	√
	- Equivalent Airspeed (EAS)	√
	- True Airspeed (TAS)	✓
6.2.5.2	Lift	√
	- equation of continuity	✓
	- Bernoulli's theorem and the venturi effect	√
6.2.5.2.1	Aerofoil definitions	√
	- relative airflow	√
	- camber and mean camber line	√
	- chord line	√

REF		н
	- angle of attack	√
	- centre of pressure	√
	pressure distribution around an aerofoil	√
	- lift formula and lift curve	√
	- lift/drag ratio	√
6.2.5.2.2	Shape of an aerofoil	√
	- symmetrical aerofoils	√
	- aspect ratio	√
6.2.5.3	Drag	√
6.2.5.3.1	Profile drag	√
	– form drag	√
	- skin friction	√
	- causes, variation with speed, methods of minimising	√
6.2.5.3.2	Induced drag	√
	- causes, vortices, variation with speed/angle of attack	√
	 design methods used to minimise 	√
6.2.5.3.3	Drag formula	√
6.2.5.3.4	Drag curves, total drag curve and factors affecting	√
6.2.5.4	Distribution of forces – balance of couples	√
	- lift/weight and thrust/drag couples	√
	- methods of achieving balance	√
6.2.5.5	Stability	√
	 helicopter axes and planes of rotation 	√
	- static stability	√
	- dynamic stability	√
	- longitudinal stability	√
	- lateral stability	√
	- directional stability	√

REF		Н
	- effects of design features on stability	√
6.2.5.6	Blade stall	√
	- stalling angle of attack	√
	- boundary layer flow	√
	- variation of lift and drag at the stall	√
6.2.5.7	Transonic effects on blades	√
	- shock waves	√
	formation and effect on helicopter handling	√
6.2.6	HELICOPTER AERODYNAMICS	√
6.2.6.1	Definitions	√
	- axis of rotation	√
	- rotor shaft axis	√
	- tip path	√
	- tip path plane	√
	- rotor disc	√
	- disc loading	√
	- blade loading	√
6.2.6.2	The forces diagram and associated terminology	√
	- pitch angle (blade angle)	√
	- rotational airflow	√
	- induced airflow	√
	- lift blade	√
	- drag blade	√
	- total reaction - blade	√
	- rotor thrust	√
	- rotor drag	√
	- torque	√
6.2.6.3	Uniformity of rotor thrust along the blade	✓

REF		Н
	- blade twist	√
	- taper	√
	- coning angle	√
	- centrifugal force	√
	– limits of rotor RPM	√
	- centrifugal turning moments	√
6.2.6.4	Helicopter controls	√
6.2.6.4.1	Collective lever	√
	- collective pitch changes	√
	- relationship with rotor thrust and rotor drag	√
6.2.6.4.2	Cyclic stick	√
	- cyclic pitch changes	√
	- rotor disc attitude	√
	- rotor thrust tilt	√
6.2.6.4.3	Yaw pedals	√
	- fuselage torque	√
	- tail rotor drift	√
	- tail rotor roll	√
	- fenestron tail	√
	- notar	√
6.2.6.5	Rotor blade freedom of movement	√
	- the feathering hinge	√
	- pitch angle	√
6.2.6.6	Flapping	√
	- the flapping hinge	✓
	- flapping to equality	√
6.2.6.7	Dragging	√
	– the drag hinge	√

REF		Н
	- drag dampers	✓
	- leading/lagging	✓
	- periodic drag changes	✓
	- blade CG (conservation of angular momentum)	✓
	- hookes joint effect	✓
6.2.6.8	Phase lag and advance angle	√
	- the control orbit	√
	- pitch operating arm movement	✓
	- rate of pitch change	✓
	- rate of blade flapping	√
	- resulting disc attitude	√
	phase lag definition	√
	 advantage angle – definition 	√
6.2.6.9	Vertical flight	√
	- take-off	√
	- vertical climb	√
	vertical descent	√
	 hover outside ground effect 	√
	– ground effect	√
	- factors affecting ground cushion	√
	- avoidance of dynamic roll-over	√
6.2.6.10	Force in balance	✓
	- at the hover	√
	- in forward flight	√
	- influence of CG	√
	- influence of rotor shaft tilt	√
6.2.6.11	Translational lift	√
	- effect of horizontal airflow on induce flow	✓

REF		Н
	- variation of total flow through the disc with forward flight	✓
	- the relationship between pitch angle and angle of attack	✓
6.2.6.12	Power requirements	√
	- rotor profile power	√
	power absorption – tail rotor and ancillary equipment	√
	- rotor profile power variation with forward speed	√
	- induced drag	√
	- parasite drag	√
	- total power required	✓
	- power available	✓
6.2.6.13	Further aerodynamics of forward flight	✓
	- transition to and from the hover	√
	- symmetry and asymmetry of rotor thrust	✓
	– main rotor flapback	✓
	- tail rotor flapback and methods of removal	✓
	- factor affecting maximum forward speed	√
	 design limits of cyclic stick 	√
	- airflow reversal	√
	- retreating blade stall	√
	 symptoms and recovery actions 	√
	- compressibility	√
	- flow separation	√
	- shock stall	√
	- 'G' stall	✓
	– inflow roll	✓
6.2.6.14	Factors affecting cyclic stick limits	✓
	– all up mass (AUM)	✓
	- density altitude	✓

REF		Н
	- CG position	√
6.2.6.15	The flare – power flight	√
	- thrust reversal	√
	 effect on helicopter attitude 	√
	- increase in rotor thrust	√
	- decrease in rotor drag	√
	- increase in rotor RPM	✓
	- effect of deceleration	✓
6.2.6.16	Settling with power (vortex ring)	✓
	- tip vortices	√
	- comparison between induced flow and external flow	✓
	- development	✓
	- change in relative airflow along blade span	✓
	- root stall and turbulence	✓
6.2.6.17	Blade sailing	✓
	- rotor RPM and blade rigidity	✓
	- effect of adverse wind	√
	- minimising the danger	√
6.2.6.18	Autorotation – vertical	✓
	- rate of descent airflow	✓
	- effective airflow	✓
	- relative airflow	✓
	- inflow and outflow angle	✓
	- autorotative force	✓
	- rotor drag	✓
	- effect of mass and altitude	✓
	– control of rotor RPM	✓

REF		Н
	- rotor RPM stability	✓
6.2.6.19	Autorotation – forward flight	✓
	- factors affecting inflow angle	✓
	- effect of forward speed on rate of descent	✓
	- asymmetry of autorotative disc area in forward flight	✓
	- turning	✓
	- the flare	✓
	 rotor RPM increase from movement of autorotative section 	✓
	- increase in rotor thrust	✓
	 reduction in rate of descent 	✓
	- range and endurance	✓
	- autorotative landing	✓
	 height/velocity avoidance graph 	✓
6.2.6.20	Stability	✓
	- hover	✓
	- forward flight	✓
	- rearward flight	✓
	- stability aids	✓
	- stabilisers and effects of CG	✓
	 gyro controlled stabiliser system 	✓
	- stabiliser bars	✓
	– delta hinge effect	√
	- effect of lever application on attitude in translational flight	√
6.2.6.21	Control power	✓
	- the teetering head	√
	- fully articulated head	√
	- the rigid rotor	✓

REF		Н
	- effect on stability	✓
	- effect on dynamic/static rollover	✓
6.2.6.22	Power requirements – graphs	✓
	power required/power available graph	✓
	- maximum rate of climb speed	✓
	- operating with limited power	✓
	- best angle of climb speed	✓
	- maximum speed	✓
	- range and endurance	✓
	- overpitch	✓
	- overtorque	✓
	- turning	✓
	- comparison of piston and turbine engine helicopters	✓
	- range and endurance	✓
	- effect of density altitude	✓
	- effect of aircraft weight	√